
Introduction
Computational Statistics

Johan Larsson
Department of Mathematical Sciences, University of Copenhagen

August 26, 2025

1 / 36

What is Computational Statistics?

It is a broad field, where meaning depends on context.

One definition is that it is the use of computational methods to solve statistical
problems, for instance
• simulation,
• optimization,
• numerical integration,
• data analysis, and
• visualization.

2 / 36

A Running Example

Let’s try to get a bit of flavor of what we
will be doing in the course.

Throughout the course we will use a data
set of amino acid angles, Φ and Ψ, from
protein structures.

Figure 1: Amino Acid Angles

3 / 36

Histograms

A simple way to analyze the distributions of the angles Φ and Ψ is the histogram.

ggplot(phipsi, aes(x = phi)) +
geom_histogram() +
geom_rug(alpha = 0.5) +
labs(

x = expression(Phi),
y = "Density"

)
0

20

40

60

−2 0 2
Φ

D
en

si
ty

4 / 36

Density Estimation

Histograms are not very smooth. If we allow ourselves to make stronger assumptions, we
can get a smoother estimate of the distribution, using kernel density estimation (KDE).

ggplot(phipsi, aes(x = phi)) +
geom_density() +
geom_rug(alpha = 0.5) +
labs(

x = expression(Phi),
y = "Density"

) 0.0

0.2

0.4

0.6

−3 −2 −1 0 1 2 3
Φ

D
en

si
ty

But how is this KDE actually computed? Doing this efficiently is a computational
statistics problem.

5 / 36

Statistical Topics of the Course

The course can be broken down into a number of statistical and computational topics.

There are three statistical topics in the course:

Smoothing
We will learn how to compute efficient kernel density estimates and scatterplot
smoothers.

Simulation
We will learn to efficiently simulate from probability distributions using inversion,
rejection, and importance sampling.

Optimization
We will learn to solve optimization problems that arise in statistics, for instance in
maximum likelihood estimation (MLE), using the EM algorithm and gradient-based
optimization.

6 / 36

Statistical Topics of the Course

The course can be broken down into a number of statistical and computational topics.

There are three statistical topics in the course:

Smoothing
We will learn how to compute efficient kernel density estimates and scatterplot
smoothers.

Simulation
We will learn to efficiently simulate from probability distributions using inversion,
rejection, and importance sampling.

Optimization
We will learn to solve optimization problems that arise in statistics, for instance in
maximum likelihood estimation (MLE), using the EM algorithm and gradient-based
optimization.

6 / 36

Computational Topics of the Course

Implementation
We will learn how to implement statistical methods in R, using object-oriented
programming and functional programming.

Correctness
We will learn how to ensure that our code is correct, using testing and debugging.

Efficiency
We will learn how measure performance and find bottlenecks in our code using profiling
and benchmarking, and how to optimize it.

7 / 36

Teaching Staff

Instructor
Johan Larsson, postdoctoral researcher

Figure 2: Johan

Contact
Use Absalon for course-related questions
and email (see Absalon) for personal
matters.

Teaching Assistant
Jinyang Liu, PhD student in machine
learning

Figure 3: Jin

8 / 36

Assignments

Four assignments make up the bulk of the course work.

For each assignment, there are two alternatives (A and B). You will pick one.

Each assignment is tied to a particular topic:
1. Smoothing
2. Univariate simulation
3. The EM algorithm
4. Stochastic optimization

9 / 36

Presentations

There will be four presentation sessions (week 3, 4, 6, 7)1

You will divide into groups of 2-3 students and present your solution to one of the
assignments during one of the sessions.

You will register for groups and assignments in Absalon.

Presentation is compulsory but not graded. We expect solutions to be work in progress.

1Not counting the potato harvesting week when you are off.
10 / 36

https://absalon.ku/dk

Oral Examination

The main examination is an oral exam based on your assignments.

You will prepare four presentations, one for each assignment you picked.

At the exam, you will present one of these at random.

11 / 36

Schedule

Lectures
• Tuesdays and Thursdays,

10:15–12:00 (Johan)

Exercise Sessions
• Thursdays, 08:15–10:00 (Jinyang)

Presentations
• Thursdays, 13:15–15:00 (Johan)
• Only weeks 3, 4, 6, and 7

Examination
• November 6-8 (8.15-17.30,

tentative)
• Rooms to be announced

12 / 36

Course Literature

Computational Statistics with R
Main textbook for the course, written by Niels Richard Hansen.
• Available online at https://cswr.nrhstat.org/
• Not yet complete, but we only use parts that are.
• Companion package: install with

pak::pak("github::nielsrhansen/CSwR/CSwR_package").

Advanced R
Auxiliary textbook, written by Hadley Wickham.
• Available online at https://adv-r.hadley.nz/
• Covers more advanced R programming topics.
• We will use selected chapters.

13 / 36

https://cswr.nrhstat.org/
https://github.com/nielsrhansen/CSwR/tree/master/CSwR_package
https://adv-r.hadley.nz/

Online Resources

Absalon
Main source for information and communication about the
course. Accessed at absalon.ku.dk.

CompStat Web Page
Course content will be uploaded to
github.io/math-ku/compstat.

This is where you will a detailed schedule of the course, slides,
and the assignments.

Figure 4: Absalon

14 / 36

https://absalon.ku.dk/
https://math-ku.github.io/compstat/

Generative AI

Generative AI (e.g. ChatGPT, Copilot, Bard, etc.) are powerful tools.

You are allowed to use them in this course, but with some caveats:
• You must understand the results.
• You must acknowledge their use in your assignments and how you used them.

Copilot
Access to GitHub Copilot is available for
free to students, via GitHub Education.

15 / 36

https://education.github.com

Programming in R

What is R?

R is a programming language and application (command-line interface) for statistical
computing and graphics.

It is widely used among statisticians and data miners for developing statistical software
and data analysis.

Why R?
It is free, open source, and cross-platform.

Why not Python/Julia?
R has a large number of packages for statistical computing and graphics.

My personal opinion is that:
• R is better suited for visualization and exploratory data analysis, while
• Python is better suited for general-purpose programming and machine learning, and
• Julia is a best for numerical computing.

16 / 36

Prerequisite R Knowledge

We expect knowledge of
• data structures (vectors, lists, data frames),
• control structures (loops, if-then-else),
• function calling,
• interactive and script usage (source) of R.

All of this is covered in chapters 1-5 of Advanced R.

We do not expect that you are an expert in R.

17 / 36

https://adv-r.hadley.nz/

Getting Help with R

Google It
Especially good for error messages.

Generative AI
• Also great for error messages and debugging
• Caution: You need to understand the results, especially when you ask it to create

something for you.

Absalon Discussion Forum
Use the fact that there are twenty other people in the course with exactly the same
problem.

18 / 36

Functions

Functions in R

Everything that happens in R is the result of a function call. Even +, [and <- are
functions.

An R function takes a number of arguments, and when a function call is evaluated it
computes a return value.

Functions can return any R object, including functions!

Implementations of R functions are collected into source files, which can be organized
into packages.

19 / 36

Why Functions?

Technically, you could write all your code in a single script. So why use functions?

Functions help you structure your code, make it reusable, and make it easier to test and
debug.

A well-designed function has a single purpose, which makes it easier to understand and
reason about.

Rule of Thumb
If you find yourself writing the same piece of code more than, say, twice, then it is
probably a good idea to turn it into a function.

20 / 36

Function Syntax

Here is a simple function that takes two
arguments and returns their sum.

f <- function(x, y) {
x + y

}

A function has three components:
arguments, body, and environment.

Arguments
In this case, x and y are the arguments.

Body
The body of the function is everything
inside the curly braces {}, that is, x + y.

Environment
The environment is where the function
was created. It is used to look up
variables that are not defined inside the
function.

environment(f)

<environment: R_GlobalEnv>

21 / 36

Arguments

Arguments are specified in the parentheses after the function name.
Arguments can have default values

g <- function(x, y = 2) {
x + y

}

g(3) # y takes the default value 2

[1] 5

Named arguments can be passed in any order.

g(y = 3, x = 2)

[1] 5
22 / 36

Copy-on-Write

R uses copy-on-write semantics for function arguments, which means that arguments are
only copied if they are modified inside the function.

This makes function calls efficient, and also means that you can modify arguments
without shooting yourself in the foot.

h <- function(x) {
x[1] <- 100
x

}

a <- 1:5

h(a) # a is not modified

[1] 100 2 3 4 5

a # a is still 1:5

[1] 1 2 3 4 5

<<- Operator
You can use the <<- operator to modify
variables in the parent environment, but
please don’t.

23 / 36

Environment and Scoping

When a function is called, a new environment is created for the function.

This environment is used to look up variables that are not defined inside the function.

The new environment has as its parent the environment where the function was created.

This is called lexical scoping.

x <- 10
f <- function(y) {

x + y
}
f(5)

[1] 15

Assuming that x is not defined inside
f(), R looks for x in the environment
where f() was created, which is the
global environment in this case.
As a rule of thumb, avoid using variables
from the parent environment inside
functions.

24 / 36

Return Values

The return value of a function is the value of the last expression in the body.

Unless you explicitly use the return() function, which immediately exits the function
and returns the specified value.

f <- function(x, y) {
return(x + y)
x * y # This line is never reached

}

Whether or not to use return() is a matter of style. Personally, I prefer to not use it
unless returning early.

25 / 36

Functional Programming

Functions are first-class citizens: they can be passed as arguments to other functions,
returned as values from functions, and assigned to variables. R is a functional
programming language.

This allows for a high degree of abstraction and code reuse, for instance through the use
of the apply family of functions.
Let’s write our own apply function.

our_apply <- function(x, fun) {
val <- numeric(length(x))
for (i in seq_along(x)) {

val[i] <- fun(x[[i]])
}
val

}

26 / 36

Testing Our Apply Function

sapply(1:10, exp)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159
[6] 403.428793 1096.633158 2980.957987 8103.083928 22026.465795

our_apply(1:10, exp)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159
[6] 403.428793 1096.633158 2980.957987 8103.083928 22026.465795

Assumptions of our_apply()
x is a “list-like” structure, fun takes a single argument, and fun returns a numeric.

27 / 36

What if fun Needs Additional Arguments?

Then we get an error:

our_apply(1:10, rpois)

Error in fun(x[[i]]): argument "lambda" is missing, with no default

Anonymous Functions
We can use an anonymous function to pass additional arguments to fun().

our_apply(
1:10,
function(lambda) rpois(1, lambda = 0.9)

)

[1] 0 0 1 2 0 2 3 1 1 0

28 / 36

Ellipsis (...)

An arbitrary number of arguments can be forwarded via the ... (ellipsis) argument,
which allows us to pass additional arguments to fun().

our_apply <- function(x, fun, ...) { 1

val <- numeric(length(x))
for (i in seq_along(x)) {

val[i] <- fun(x[[i]], ...) 2

}
val

}

1 ... in the argument list of our_apply() collects additional arguments.
2 ... in the call to fun() passes these additional arguments to fun().

our_apply(1:10, rpois, n = 1)

[1] 0 1 4 3 7 6 8 16 8 12
29 / 36

Assertions

It is a good idea to assert that the arguments to a function are valid, and stop early if
they are not.

The simplest way to do this is to use the stopifnot() function.

my_mean <- function(x) {
stopifnot(is.numeric(x))
sum(x) / length(x)

}

my_mean(c("asdf", "qwer"))

Error in my_mean(c("asdf", "qwer")): is.numeric(x) is not TRUE

If x is not numeric, we would otherwise get an error deep inside sum().

30 / 36

Custom Error Messages

For more control over the error message, use if and stop().

my_mean <- function(x) {
if (!is.numeric(x)) {

stop("x must be numeric")
}
sum(x) / length(x)

}

31 / 36

Document Your Functions

Document your functions, including their arguments, return values, and any side effects.

Documentation can be either ad-hoc comments or using a documentation system like
roxygen2.

Aim to document why something is done, not just what is done. The latter is often
obvious from the code itself.

32 / 36

https://roxygen2.r-lib.org/

Naming Functions

There are only two hard things in Computer Science: cache invalidation and
naming things.

–Phil Karlton

Favor Descriptive Names
Begin to see if you can use a verb. Better
long and descriptive than short and
cryptic.

Honor Common Conventions
Avoid . in names; it is used for methods
(upcoming).

Use a Consistent Style
• lowercase
• snake_case (tidyverse)
• camelCase
• UpperCamelCase

Namespace Clashes
Avoid names of existing functions.

33 / 36

Best Practices

Keep Functions Short and Focused
Functions should do one thing and do it well. If a function is too long or complex,
consider breaking it up into smaller functions.

Testing
Write tests for your functions to ensure that they work as expected. (More on this later
in the course.)

Debugging
Use browser(), traceback(), and debug() to debug your functions. (More on this
later in the course.)

34 / 36

Summary

• Functions are the building blocks of R code.
• Functions help you structure your code, make it reusable, and make it easier to test

and debug.
• Functions have arguments, a body, and an environment.
• Functions can be passed as arguments to other functions, returned as values from

functions, and assigned to variables.
• Use ... to pass additional arguments to functions.
• Document your functions and use descriptive names.
• Write tests for your functions and use debugging tools.

35 / 36

Exercises

Exercises

Exercise 1: Write a Function with a Default Argument
Write a function greet that takes a name as an argument and prints “Hello, !”. If no
name is given, it should print “Hello, world!”.

Exercise 2: Count Missing Values
Write a function count_na that takes a vector and returns the number of missing (NA)
values in it.

Exercise 3: Check if a Number is Even
Write a function is_even() that returns TRUE if its argument is even, FALSE otherwise.

36 / 36

	Programming in R
	Functions
	Exercises

